GENERAL THERAPY
General management of acute stroke patients
Created 20/06/2023, last revision 13/09/2023
- the management of patients with acute stroke includes
- diagnosis and specific stroke treatment (recanalization, surgery, etc.)
- management and prevention of general medical problems
- cardiac and pulmonary care, fluid and ion balance restoration, metabolic maintenance, blood pressure control
- prevention and treatment of complications (infection, VTE, intracranial hypertension, bed sores, etc.)
- evaluation of stroke etiology and initiation of individualized secondary prevention
- early initiation of rehabilitation (incl. speech therapy, ergotherapy, etc.)
- the proper management of general conditions and complications is equally important as specific therapy (although the latter may sometimes attract more attention)
Stroke unit care
|
- it is recommended to admit the patient to a stroke unit (AHA/ASA 2019 I/A)
- for a minimum of 24 hours, preferably for 48-72 hours
- care is provided by a specialized multidisciplinary team
- treatment in a stroke unit results in a relative reduction in mortality and dependency compared to treatment in a regular ward [Langhorne, 1997]Â
- treating 100 patients using this approach can result in a reduction of 5 patients who would die or remain dependent (NNT 20)
- the benefit is universal and applicable to all types of stroke and patients of varying degrees of severity
Basic monitoring |
- oximetry (maintain sat O2 > 94%)
- use a finger or earlobe sensor
- oxygen should be provided to maintain oxygen saturation >94%Â (AHA/ASA 2019, I/C)
- do not administer oxygen in nonhypoxic patients (AHA/ASA 2019 III/B-R)
- blood pressure
- check BP every 30 minutes in stabilized patient
- otherwise, proceed per specific protocols (→ Blood pressure management in acute stroke, hypertensive urgency protocols, etc.)
- hypotension and hypovolemia should be corrected to maintain necessary systemic perfusion levels
- the usefulness of drug-induced hypertension in patients with AIS is not well established (AHA/ASA 2019, IIb/B)
- ECG
- record 12-lead ECG on admission, then monitor with 3-lead ECG
- especially infarctions in the right insula can lead to autonomic system failure and cardiac complications (ST depression, T wave inversion, troponin elevation in the laboratory)
- look for arrhythmias (particularly atrial fibrillation)
- monitoring the state of consciousness and neurostatus (GCS, NIHSS)
- adjust the frequency of evaluations based on the patient’s condition and underlying diagnosis (more frequent in extensive SAH, ICH, malignant edema)
- in unconscious patients, repeatedly assess cranial nerves and brainstem reflexes
- adjust the frequency of evaluations based on the patient’s condition and underlying diagnosis (more frequent in extensive SAH, ICH, malignant edema)
- search for additional symptoms such as headache, nausea, vertigo, singultus
Extended neuromonitoring
|
- recommended in patients with severe stroke (~ 24-48h); a 10-20 or 2-4 channel EEG system with adhesive electrodes is used
- monitoring of SE treatment (always) and depth of anesthesia
- NCSE diagnosis
- sensitivity and specificity of standard EEG is low
- clinical manifestations are none or only subtle and often escape attention (facial twitching, short eyeball deviation, autonomic signs)
- DDx of non-epileptic seizures
- monitoring of metabolic coma
- SSEP (prognostic value in coma vigile)
- BAEP (brain death diagnosis in patients with decompressive craniectomy)
- ERP (event-related potential)
- detection of P300 wave in a coma is associated with a good prognosis
- indications for ischemic stroke patients are ambiguous
- probably advantageous in patients with GCS ≤ 8 with extensive hematoma, SAH, or hydrocephalus
- intraparenchymal or intraventricular sensors are available
- doppler signs
- decrease in velocities, increase in resistance and pulsatility index (RI and PI), then disappearance of diastolic flows, and finally systolic spikes or biphasic flow curve → TCCD in the diagnosis of brain death
- ICP=(10.927* PI)-1.284
- ↓ vasomotor reactivity
- B-mode signs
- optic nerve sheath enlargement or head prominence (transorbital approach)
- midline shift (transtemporal approach)
- a special catheter is inserted into the bulb of the internal jugular vein to monitor venous blood O2 saturation
- global information is provided, and therefore may not reflect localized issues; take into account body temperature and the effect of medication)
- normal values: 55-80%
- SjO2 < 50% with normal arterial O2 saturation indicates either ↓ CBF (e.g., when cerebrovascular resistance is increased) or increased consumption (↑CMRO2)
- SjO2 > 85% indicates either hyperemia with ↑CBF or ↓CMRO2
- 2 sensors are placed on the forehead; emitted beams penetrate to about 4 cm
- from the reflected light, the oxygenation of the brain tissue is derived
- direct measurement of parenchymal oxygenation near the sensor
- standard 20-45 mm Hg
- ischemic threshold (depending on the type of sensor < 15-20 mm Hg)
- measurement of extracellular metabolite levels in the CNS ( glucose, lactate, pyruvate, lactate/pyruvate ratio, glutamate, glycerol)
Intravascular access |
Peripheral venous system
- ensure intravascular access via a venous cannula in every acute stroke patient (bilaterally if thrombolysis is planned)
- uncomplicated insertion and management, prefer disinfection with 0.5% chlorhexidine in alcohol during insertion
- some drugs and concentrated solutions cannot be administered (limit < 600 mosm/l)
- insertion time: 72-96h
- remove if not used > 24h or no further use is probable
- replace in case of local (e.g., pain, swelling, skin discoloration, skin temperature change, hardening, resistance to flushing) or systemic (fever) complications
- for longer use, prefer the midline catheter (approx. 14 days – 3 months)
- can be used for blood sampling
- drugs with osmolarity < 600 mOsm/l and nutrition < 800 mOsm/l can be administered
- when peripheral IV access is required for > 3 months, prefer PICC catheter
- it is placed under ultrasound guidance in the cavoatrial junction (when maximum P wave is seen in ECG)
- may be retained for several months
Central venous system
- central venous catheters (lines) are commonly placed in the internal jugular, subclavian, or femoral veins (usually using a 2 or 3-way cannula)
- Â order chest X-ray to exclude pneumothorax 3 hours after subclavian vein cannulation
- central catheter enables:
- administration of all types of drugs and concentrated solutions
- measuring central venous pressure (CVP)
- normally 5-12 cm H2O, subtract PEEP in ventilated patients
- adhere to aseptic treatment incl. sterile cover, and daily checks
- complications:
- insertion time: 1-3 weeks
- risk of infection increases from day 7 [Öncü, 2003]
- use PICC or tunneled catheters when prolonged central venous access is required
Major indications for the use of central venous catheters
- difficult peripheral venous access
- delivery of certain medications or fluids
- medications such as vasopressors, chemotherapeutic agents, or hypertonic solutions that damage the peripheral veins
- additionally, catheters with multiple lumens enable the delivery of several parenteral medications simultaneously
- prolonged intravenous therapies
- specialized treatment
- hemodialysis, plasmapheresis, transvenous cardiac pacing, and invasive hemodynamic monitoring
Classification of intravascular access according to the expected time of insertion
Classification of intravascular access according to the expected time of insertion |
â–º Short-term
â–º Long-term
|
Ventilation and respiration |
- ensure adequate oxygenation (O2 saturation > 94%)
- SO2S trial showed no benefit from routine O2 administration ⇒ O2 administration is not recommended in nonhypoxic patients
- test breathing reflexes and regularly assess the risk of aspiration (many patients have bulbar or pseudobulbar syndrome) → see water swallow test below
- a common cause of acute respiratory insufficiency is aspiration and/or accumulation of mucus and saliva in the airways due to inadequate expectoration
- in cases of respiratory infection, administer antibiotics empirically after collecting sputum and swabs. Adjust the therapy according to cultures and sensitivity results
- in case of respiratory failure, initiate early intubation and mechanical ventilation
- before intubation, consider the patient´s prior wishes, general condition, and prognosis
- Hyperbaric Oxygen Therapy (HBOT) is not recommended, except for stroke caused by air embolization  (Murphy, 2019)  (AHA/ASA 2019 III/B)
- the limited data show no benefit
- HBO thus should be offered only in the context of a clinical trial or for individuals with cerebral air embolism
Signs of respiratory failure
|
|
ECG monitoring, arrhythmias
|
- acute stroke is associated with an increased risk of cardiac arrhythmias, affecting up to 25% of hospitalized stroke patients
- the incidence is greatest within the first 24 hours
- tachycardia is more common than bradycardia
- arrhythmias are more prevalent in patients with hemispheric lesions
- while some arrhythmias are benign (such as ventricular/atrial extrasystoles), persistent tachyarrhythmias may lead to hypotension or cardiac failure, potentially contributing to stroke progression
- atrial fibrillation should be excluded as a potential cause of the stroke
- ECG monitoring is recommended for ≥ 24 hours (AHA/ASA 2019 I/B-NR)
- ECG changes are common in acute stroke
- the ST segment is most commonly affected; these changes may mimic myocardial infarction (ST elevation can be present, but not depression) ⇒ exclude myocardial infarction in such cases
- the ST segment is most commonly affected; these changes may mimic myocardial infarction (ST elevation can be present, but not depression) ⇒ exclude myocardial infarction in such cases
- the situation is further complicated by frequent elevation in troponin levels, which is usually attributable to cerebral infarction rather than myocardial infarction
Fluids and minerals, glycemia
|
- monitor fluid balance every 6-24h and aim to maintain normovolemia or mild hypervolemia
- measure central venous pressure (CVP) if needed
- avoid fluid restriction as it increases the risk of ischemic deficit (especially in SAH)
- hypervolemic hemodilution and vasodilator therapy are not recommended
- monitor biochemical parameters (ion levels, urea, creatinine, C-reactive protein, hepatic enzymes, and osmolality) as well as complete blood count (CBC) +coagulation profile
- adjust thefrequency of sampling based on the patient’s condition and any detected abnormalities
- acid–base balance checks
- acutely to detect conditions such as hypoxemia, hypercapnia, acidosis/alkalosis
- stable patients on UPV should be checked twice daily
Glycemia
- glucose serves as the primary energy source for the brain; >90% of the brain’s energy derives from the oxidation of glucose. Even during hypoglycemia, glucose remains the most important substrate for brain metabolism
- the brain/serum glucose ratio (typically 0.6-0.7) drops to 0.2-0.4 in cases of brain injury (esulting in increased sensitivity to hypoglycemia)
- hyperglycemia (stress hyperglycemia, stress diabetes) is present in up to 2/3 of stroke patients, worsening the outcome of all types of stroke and traumatic brain injuries (TBI)
- a meta-analysis focus on in-hospital mortality in critically with hyperglycemia showed that even mild hyperglycemia (6.1-8.0 mmol/l) in non-diabetics is associated with a 3.9-fold higher risk of death compared to completely normoglycemic individuals  [Capes, 2000]
- according to the NICE-SUGAR study, the optimal target glycemia in intensive care is < 10 mmol/L;Â hypercorrection to levels < 6 mmol/L increases mortality
- maintain glycemia around 7.8-10 mmol/LÂ (140-180 mg/dL) (AHA/ASA 2019 IIa/C-LD)
- closely monitor and treat hypoglycemia when levels drop below 3.3 mmol (60mg/dL)Â (AHA/ASA 2019 I/C-LD)
- intensive glycemic control can lead to hypoglycemia
- microdialysis studies indicate that intensive insulin therapy may lead to brain glucose deprivation and and elevated levels of lactate and glutamate [Vespa, 2006]
- check glycemia every 6h (glycemic profile); monitor more frequently during continuous insulin administration
- use repeated boluses of subcutaneous insulin or continuous IV infusion → per insulin protocol
Fever
|
- maintain normothermia
- identify and treat sources of hyperthermia (body temperature >38°C)
- administer antipyretic medication to hyperthermic patients  (AHA/ASA 219 I/C)
- the benefit of induced hypothermia is uncertain
Nausea and vomiting
|
- most commonly occurs in ICH, SAH, and brainstem ischemia
Prevention and management of GI complications
|
- gastrointestinal (GI) complications are common and significantly worsen morbidity and mortality
- most common complications:
- stress ulcer
- gastroesophageal reflux (GER)
- gastroparesis
- intestinal paralysis (paralytic ileus)
- ⇒ X-ray, abdominal SONO or CT
- endoscopic desufflation
- constipation/diarrhea
- singultus
- the most common cause of GI bleeding is either a preexisting lesion or newly developed “stress ulcer”
- disruption of the integrity of the upper GI mucosa due to extreme physiological stress, typically in critically ill patients
- often develops within a few hours after the initial insult
- can result in bleeding or perforation ⇒ ↑ mortality and intensive care stay
- incidence approx. 3% when on prophylactic medication
- risk factors for GI bleeding
- coagulopathies, including iatrogenic
- history of GI bleeding/peptic ulcer
- mechanical ventilation > 48h
- traumatic brain/spinal cord injury
- sepsis
- corticosteroids use
- renal and hepatic impairment
- malignancy
- sever stroke
- prophylaxis should be administered only to patients at increased risk and discontinued in a timely manner (due to the increased risk of nosocomial pneumonia, Clostridium difficile infection, drug interactions, or hepatotoxicity); routine use of PPIs does not reduce mortality
- proton pump inhibitors (PPIs) – OMEPRAZOLE, PANTOPRAZOLE
- 20-40 mg once daily PO or IV
- PPIs are more expensive and significantly more effective than H2-blockers [Buendgens, 2016]
- Â use H2 blockers if PPIs are contraindicated
- FAMOTIDINE 40 mg once daily, or 20 mg twice daily PO
- FAMOTIDINE 40 mg once daily, or 20 mg twice daily PO
- SUCRALFATE
- 1g PO or via nasogastric tube every 6-8 hours
- used in peptic ulcer prevention and treatment or to reduce hyperphosphatemia
- antacids
- proton pump inhibitors (PPIs) – OMEPRAZOLE, PANTOPRAZOLE
- initiate enteral nutrition as soon as possible!
- induced by a clonic contraction of the diaphragm with simultaneous closure of the glottis
- benign causes predominate in short-term hiccups
- distention of the esophagus and stomach, intake of carbonated fluids, irritation of the digestive tract with spices)
- emotions, excitement
- sudden change in temperature): drinks (hot/cold), shower, air, etc.
- more serious causes:
- pulmonary and mediastinal diseases (pneumonia, lung tumors, mediastinitis, and mediastinal tumors)
- abdominal cavity diseases (direct irritation of the diaphragm – ileus, peritonitis, stomach and liver tumors and metastases, liver abscess, pancreatitis, and pancreatic tumors, etc.)
- heart diseases (pericarditis, MI)
- esophageal diseases (oesophageal obstruction by solid food or tumor, or esophagitis)
- metabolic causes (uremia, diabetes decompensation), acid-base disorders, mineral imbalances (hyponatremia)
- central (direct or indirect brainstem lesions) – tumors, stroke, trauma
- alcohol and drugs (dexamethasone, methyldopa, sulfonamides, antiepileptic drugs)
- severe forms are often resistant to symptomatic treatment
- treat potential causes
- pharmacotherapy (see table), including combination therapy (e.g., omeprazole + baclofen +Â gabapentin)
- psychotherapy
- acupuncture
BACLOFEN the both peripheral and central effect |
PO 5-20 mg every 8-12 hours (max dose 60 mg/d) |
Anticonvulsive drugs |
|
gabapentin (NEURONTIN) | PO 300 mg every 8 hours |
valproate (ORFIRIL, DEPAKINE) |
PO up to 15 mg/kg/24h divided into 3-4 doses |
Neuroleptics (central effect) | |
HALOPERIDOL | POÂ 1-4 mg 1-3x daily
|
chlorpromazine (PLEGOMAZIN) |
PO 25-50 mg every 6-8 h (if PO form available) after 3 days, increase the dose to 25-50mg every 3-4h |
Prokinetic drugs |
|
metoclopramide |
PO 10 mg every 6-8 hours |
PPI (if GER is suspected) | |
omeprazole pantoprazole |
PO 20-40 mg once daily |
Pain management |
- pain is typically present in SAH, less commonly in ICH and ischemic stroke
- untreated pain may contribute to elevated blood pressure, tachycardia, or patient agitation
- rule out fractures or dislocations, which are often caused by falls due to sudden paresis
Dysphagia screening, oral hygiene
|
Nutrition
|
- catabolic state is common in the acute phase of stroke
- the total energy demand depends on the basic metabolic rate (BMR) and other factors
- early initiation of nutrition (within 24 hours) reduces the risk of various complications (malnutrition increases the risk of infection, muscle loss, etc.)
- enteral nutrition is preferred; if parenteral nutrition is necessary, use it for the shortest possible duration
- in patients with significant dysphagia, insert a nasogastric tube (NGS) for the prevention of aspiration bronchopneumonia
- follow oral hygiene protocols (AHA/ASA 2018 IIb/B-NR)
- Harris-Benedict formula – basal metabolic rate (BMR) [kcal/day]
- men = 66,47 + 13,75 x weight [kg] + 5 x height [cm] – 6,67 x age [years]
- women = 65,10 + 9,56 x weight [kg] + 1,85 x height[cm] – 4,68 x age [years]
- total energy demand = BMR x A factor x T factor (kcal/day)
- kJ = 4.18 * kcal
- for obese people (with a BMI > 30) prefer the Mifflin−St. Jeor (MSJ) equation → calculator
- men(kcal/day) = 5 + 10× weight (kg) + 6.25× height (cm) − 5× age (years)
- women(kcal/day) = −161 + 10× weight (kg) + 6.25× height (cm) − 5× age (years)
A factor
(activity)
|
immobile patient  1.2
|
|
mobile patient  1.3
|
||
T factor
(trauma)
|
surgery
|
minor-moderate 1.0-1.1
major 1.1-1.2
|
infection
|
light 1.0-1.2
moderate 1.2-1.4
severe 1.4-1.8
|
|
trauma
|
1.2-1.35
|
|
polytrauma
|
1.6
|
|
burn injury
|
< 20% Â Â Â 1.0-1.5
20-40% Â Â 1.,5-1.85
> 40% Â Â Â 1.85-1.95
|
Prevention of infection |
- adhere to barrier measures when in contact with the patient, secure careful hand washing by staff
- follow protocols for the prevention of aspiration and early detection of impaired airway hygiene
- regularly evaluate the necessity of each invasive access, and replace them regularly
- risk of complications increases significantly:
- from day 3 for cannula
- from day 5 for urinary catheter
- from day 7 for central venous catheter (CVC)
- risk of complications increases significantly:
- microbiological screening
- repeated sputum (throat and nasal swab) and urine cultures twice a week in the ICU
- take cultures after transfer from another department
- isolate the patient if necessary (especially after transfers from ICU, neurosurgery)
- repeated sputum (throat and nasal swab) and urine cultures twice a week in the ICU
- prophylactic administration of antibiotics is not indicated (AHA/ASA 2018 III/B-R)
Early rehabilitation and speech therapy |
- start rehabilitation and ergotherapy ASAP, including early verticalization
- however, overly aggressive therapy in the first 24h is not beneficial (AVERT study)Â (AHA/ASA 2019 III/B-R)
- mechanical aids have a positive effect Â
- effect of fluoxetine on improving motor function is not proven
- timing and intensity of rehabilitation in SAH and ICH must be individualized
Delirium, anxiety, depression
|
- search for signs of delirium, depression, or anxiety and treat them properly
- in patients without depression, fluoxetine therapy is not effective in enhancing poststroke functional status
→ Delirium
Preventing pressure ulcers |
- paralysis and weakness lead to extended periods of bedrest, increasing the chance of pressure sore development
- pressure sores typically located on the back of the head, shoulders, elbows, sacrum and buttocks, hips, and heels
- measures for preventing pressure sores are crucial:
Brain edema, intracranial hypertension
|
→ Intracranial hypertension
 → Malignant cerebral infarction
Prevention of venous thromboembolism (VTE) |
- deep vein thrombosis is detected in the first 2 weeks in up to 50% of immobile patients [Brandstater, 1992]
Prophylaxis and management of acute symptomatic seizures |
→ see Acute symptomatic seizures